1. High-Speed Liquid Chromatography of Proteins.- 1. Introduction.- 1.1. Classical Chromatography of Proteins.- 1.2. Inorganic Supports.- 2. Gel Permeation Chromatography (GPC).- 2.1. Rationale.- 2.2. Coating Chemistry.- 2.3. Properties of Glycophage G/CPG.- 2.4. Applications.- 2.5. Column Preparation.- 2.6. Resolution.- 3. Ion Exchange Chromatography on Carbohydrate-Coated Supports.- 3.1. Rationale.- 3.2. Bonded Phases.- 3.3. Ion Exchange Properties.- 3.4. Applications.- 3.5. Resolution.- 4. Enzyme Detectors.- 4.1. Rationale.- 4.2. Enzyme Kinetics.- 4.3. Detector Design.- 4.4. Applications.- 5. Summary.- 6. Appendix.- 7. References.- 2. Chemiluminescence and Bioluminescence Analysis.- 1. Introduction.- 1.1. Chemical Analysis Using Chemiluminescence.- 1.2. Sensitivity.- 2. Gas-Phase Chemiluminescence.- 2.1. Ozone.- 2.2. Analysis for Oxides of Nitrogen Using the O3-NO Reaction.- 2.3. Ammonia.- 2.4. Reactions of Atomic Oxygen.- 2.5. Other CL Reactions.- 2.6. Af-Nitrosoamines.- 3. Flame Chemiluminescence.- 3.1. General Characteristics.- 3.2. Sulfur.- 3.3. Selenium and Tellurium.- 3.4. Phosphorus.- 3.5. Nitrogen.- 3.6. Carbon.- 3.7. Halogens.- 4. Chemiluminescence from Organic Compounds in the Liquid Phase.- 4.1. Luminol.- 4.2. Other Reactions.- 5. Chemiluminescence for Evaluation of Material Degradation.- 6. Bioluminescence.- 7. Firefly Reaction.- 7.1. Mechanism.- 7.2. Analytical Characteristics.- 7.3. Applications.- 8. Bacterial Bioluminescence.- 8.1. Mechanism.- 8.2. Analysis for FMN.- 8.3. Analysis for Other Compounds Based on Coupling to FMN.- 9. Other Bioluminescence Reactions.- 9.1. Aequorea.- 9.2. Cypridina.- 9.3. Renilla.- 9.4. Fungal.- 10. Instrumentation.- 10.1. Introduction.- 10.2. Adaptation of Laboratory Instruments Designed for Other Purposes for Measurement of CL and BL.- 10.3. Commercial Instruments.- 10.4. Rapid-Scan Spectrometers.- 11. References.- 3. Environmental Studies of the Atmosphere with Gas Chromatography.- 1. Introduction.- 2. Sampling and Sampling Techniques.- 2.1. Grab Sampling.- 2.2. Solvent Trapping.- 2.3. Solid Sampling Systems.- 2.4. Freeze-Out Techniques Using Cryogenic Systems.- 2.5. Cryogenic Gas Chromatographic Analysis.- 3. Accuracy, Precision, and Sensitivity.- 4. Calibration Techniques.- 4.1. Methods Available.- 4.2. Total Hydrocarbons Corrected for Methane.- 4.3. Individual Hydrocarbon Component Calibrations.- 4.4. Dynamic-Calibration Gas Technique.- 4.5. Permeation Tubes.- 4.6. Diffusion Cell and Exponential Dilution Flask Technique.- 5. Detectors.- 6. Atmospheric Pollution.- 7. Industrial and Manufacturing Pollution.- 8. Low-Molecular-Weight Hydrocarbons.- 9. Polynuclear Aromatic Hydrocarbons (PAH).- 10. Nonhydrocarbon Compounds.- 11. Halogenated Compounds.- 11.1. Fluorinated Compounds.- 11.2. Vinyl Chloride.- 11.3. Alkyl Halides.- 11.4. Other Halogenated Compounds and Polychlorinated Biphenyls.- 12. Carbon Monoxide and Carbon Dioxide.- 13. Nitrogen-Containing Compounds..- 13.1. Nitric Oxides.- 13.2. Nitrous Oxide (N2O).- 13.3. Nitrogen Dioxide.- 13.4. Mixed Nitrogen Gases.- 13.5. Other Compounds Containing Nitrogen.- 13.6. Peroxyacetyl Nitrates (PAN).- 14. Oxygenated Materials.- 14.1. Ozone.- 14.2. Other Oxygen Compounds.- 15. Sulfur-Containing Compounds.- 15.1.Carbonyl Sulfide.- 15.2. Carbon Disulfide and Hydrogen Sulfide.- 15.3. Miscellaneous Sulfur-Containing Compounds.- 16. Human Volatile Material.- 17. Cigarette, Cigar, and Pipe Smoke.- 18. Exhaust Samples.- 19. Soil and Plant Atmospheres.- 20. Summary.- 21. References.- 4. Photodiode Arrays for Spectrochemical Measurements.- 1. Introduction: Electronic Image Sensors.- 2. Self-Scanning Silicon Photodiode Arrays.- 2.1. Control and Measurement Systems.- 2.2. Readout Systems.- 2.3. Cooling System.- 3. Operational Characteristics.- 3.1. Electronic Background.- 3.2. Integration Performance and Blooming.- 3.3. Lag.- 3.4. Diode-to-Diode Sensitivity Variations.- 3.5. Dynamic Range.- 4. Measurements and Applications.- 4.1. Simultaneous Multielement Analysis.- 4.2. Transient Spectral Events.- 4.3. UV-Vis Molecular Absorption Spectra.- 4.4. Rapid-Scan Spectroscopy.- 4.5. Field-Use Multichannel Spectrometer.- 4.6. Astronomical Spectrometer.- 4.7. Image-Intensified Photodiode Array Systems.- 4.8. Laser Parameter Measurements.- 4.9. Spectral-Source Profiling.- 4.10. Solar Magnetographs.- 5. Conclusions.- 6. References.- 5. Application of ESCA to the Analysis of Atmospheric Particulates.- 1. Introduction.- 2. Method.- 3. Analytical Aspects of ESCA.- 4. Application of ESCA to Particulate Analysis.- 4.1. Effect of Sample Composition at Relative Intensities.- 4.2. Binding-Energy Calibration.- 4.3. Chemical States of Sulfur and Nitrogen from Chemical Shift Measurements.- 4.4. Chemical Characterization of Particulate Carbon.- 4.5. Chemical States of Trace Metals in Particulates.- 4.6. Quantitative Aspects of ESCA Analyses.- 4.7. Determination of Molecular Forms by ESCA.- 4.8. Use of ESCA in Reaction Mechanism Studies.- 5. References.- 6. Using the Subject as His Own Referent in Assessing Day-to-Day Changes of Laboratory Test Results.- 1. Introduction.- 2. Assessing the Need for Using the Subject as His Own Referent.- 3. A Theoretical Framework Defining the Conditions for the Application of Models of Biological Time Series.- 3.1. Subject-Specific Prediction Interval.- 3.2. The Reference-Value Vector.- 3.3. Subject-Specific Reference Interval.- 4. Selection of an Appropriate Model of Biological Time-Series.- 4.1. Definitions of Various Models.- 4.2. The Choice of a Model and the Problem of Specifying an Alternative Hypothesis to That Implied by the Model.- 5. Estimates of the Day-toDay Variance in Healthy Subjects.- 5.1. Electrolytes.- 5.2. Metabolites.- 5.3. Iron.- 5.4. Lipids.- 5.5. Enzymes.- 5.6. Proteins.- 5.7. Leukocytes and Other Hematological Quantities.- 6. Contribution of Analytical Variation to the Intraindividual Day-to-Day Variation.- 7. Conclusion.- 8. References.- 9. Note Added in Proof.